
Software Design

Department of Computer Engineering
Sharif University of Technology
Maryam Ramezani
maryam.ramezani@sharif.edu

System Analysis and Design

System Analysis and Design Maryam Ramezani 2

Introduction01

System Analysis and Design Maryam Ramezani 3

Types of Software and their Differences

❑ Classification 1 of the types of software
o Custom software: developed to meet the specific needs of a particular customer and tends to be of

little use to others. e.g. web sites, air-traffic control systems
o Generic software/ (COTS)/ shrink-wrapped software: is designed to be sold on the open market, to

perform functions that many people need, and to run on general purpose computers. e.g. word
processors, spreadsheets, web browsers, computer games.

o Embedded software: run specific hardware devices which are typically sold on the open market. e.g.
washing machines, DVD players, and automobiles

❑ It is possible to take generic software and customize it and vise versa.

condition in marketType of software

Highest number of copies in useEmbedded S/W

Highest number of copies in use on

general-purpose computers

Generic S/W

What most developers work onCustom S/W

System Analysis and Design Maryam Ramezani 4

Types of Software and their Differences -continue

❑ Classification 2 of the types of software
o Real-time software:
▪ it has to react immediately (i.e. in real time) to stimuli from the environment (e.g. the pushing of a

button, a signal from a sensor)
▪ Responsiveness must always be guaranteed- safety is a key concern in their design
▪ e.g. many of the embedded systems, custom systems that run industrial plants and telephone

networks
o Data processing software:
▪ is used to run businesses.
▪ It performs functions such as recording sales, managing accounts, printing bills etc.
▪ The design concern here is how to organize the data and provide useful information gathered to the

users so they can perform their work effectively
▪ Accuracy and security of data are of major concern
▪ In traditional data processing tasks, data is gathered together in batches to be processed later.

o Some software has both real-time and data processing aspects.

System Analysis and Design Maryam Ramezani 5

Domain Name System02

System Analysis and Design Maryam Ramezani 6

DNS
❑ phonebook of the Internet

System Analysis and Design Maryam Ramezani 7

App-DNS-Server

System Analysis and Design Maryam Ramezani 8

How DNS works
Can have cache

Can have cache

System Analysis and Design Maryam Ramezani 9

How DNS works
1. A client types example.com into a web browser,

1-1 if browser or OS has cached the IP it will use it.
1-2 Else: the query travels to the internet and is received by a DNS resolver.

Note: Who is DNS resolver?
❑ Internet service provider (ISP) like Parsonline, Shatel , MCI, …
❑ Who you have set in your OS like Google DNS: 8.8.8.8, Shecan!!!!

System Analysis and Design Maryam Ramezani 10

DNS Resolver
❑ Get Name and Give IP

❑ If it has cached the IP, will return it else it will send the name to Root Server!

System Analysis and Design Maryam Ramezani 11

System Analysis and Design Maryam Ramezani 12

Root Server
❑ Like a Boss in company who

knows the received request is
related to each department!!

❑ Root server knows the related
department! TLD Server based
on the domain suffix like .com,
.ir, .net, …

System Analysis and Design Maryam Ramezani 13

TLD Server
❑ Top-Level Domain
❑ Like a department manager who

knows which employee in
department named Authoritative
Server knows the IP related to
received request.

System Analysis and Design Maryam Ramezani 14

Authoritative Server
❑ Authoritative DNS information (DNS records) from its own store.
❑ In case it doesn’t know the answer, it is going to direct to another

nameserver. For instance, the Root name server points to the responsible
TLD (Top-Level Domain) server.

❑ An authoritative NXDOMAIN. It replies that the requested domain name
doesn’t exist.

❑ An authoritative empty NOERROR (NODATA) answer. The requested
domain name exists, but the particular queried DNS record does not.

System Analysis and Design Maryam Ramezani 15

Overview

System Analysis and Design Maryam Ramezani 16

Conclusion
1. A client types example.com into a web browser,

1-1 if browser or OS has cached the IP it will use it.
1-2 Else: the query travels to the internet and is received by a DNS resolver.
Note: Who is DNS resolver: Internet service provider (ISP) like Parsonline, Shatel , MCI, …

2. The resolver then recursively queries a DNS root nameserver.
3. The root server responds to the resolver with the address of a Top Level Domain (TLD).
4. The resolver then makes a request to the .com TLD.
5. The TLD server then responds with the IP address of the domain's nameserver,

example.com.
6. Lastly, the recursive resolver sends a query to the domain's nameserver.
7. The IP address for example.com is then returned to the resolver from the nameserver.
8. The DNS resolver then responds to the web browser with the IP address of the domain

requested initially.

System Analysis and Design Maryam Ramezani 17

Common DNS Record Types
❑ 1. A (Address) Record: Maps a domain to an IPv4 address.

TTL (Time To Live): This

value determines how

long a DNS record

remains in the cache

(temporary storage). For

faster changes, you can

reduce the TTL, but for

better performance, you

can set it to Automatic.

System Analysis and Design Maryam Ramezani 18

Common DNS Record Types
❑ 2. AAAA Record: Maps a domain to an IPv6 address.

System Analysis and Design Maryam Ramezani 19

Common DNS Record Types
❑ 3. CNAME (Canonical Name) Record: Creates an alias for another domain

name.

This record makes www.sad.sharif.edu an alias for sad.sharif.edu. Any request to www.sad.sharif.edu will be directed to
sad.sharif.edu, simplifying DNS management.

System Analysis and Design Maryam Ramezani 20

Common DNS Record Types
❑ 4. NS (Name Server) Record: Specifies the authoritative DNS servers for the

domain.

These records define ns1.sharif.edu and ns2.sharif.edu as the authoritative DNS servers responsible for
managing DNS records for sharif.edu and its subdomains like sad.sharif.edu.

System Analysis and Design Maryam Ramezani 21

Common DNS Record Types
❑ 5. TXT (Text) Record: Stores text information for various purposes such as

domain verification.

System Analysis and Design Maryam Ramezani 22

Scaling03

System Analysis and Design Maryam Ramezani 23

Scaling Up (Vertical Scaling)
❑ Scaling up (or vertical scaling) is adding more resources—like CPU, memory,

and disk—to increase more compute power and storage capacity. This term
applies to traditional applications deployed on physical servers or virtual
machines as well.

With physical hardware limitations, scaling up vertically is a rather short term solution if your application needs to

continue growing.

System Analysis and Design Maryam Ramezani 24

Scaling Up (Vertical Scaling)
❑ Advantages

o It is simple and straightforward. For the applications with more traditional and
monolithic architecture, it is much simpler to just add more compute resources to scale.

o You can take advantage of powerful server hardware.

System Analysis and Design Maryam Ramezani 25

Scaling Up (Vertical Scaling)
❑ Disadvantages
o Scaling up has limits. Even with today’s powerful servers, as you continue to add

compute resources to your application pod, you will still hit the physical hardware
limitations sooner or later.

o Down Time!
o Bottlenecks develop in compute resources. As you add compute resources to a

physical server, it is difficult to increase and balance the performance linearly for all the
components, and you will most likely hit a bottleneck somewhere. For example, initially
your server has a memory bottleneck with 100% usage of memory and 70% usage of
CPU. After doubling the number of DIMMs, now you have 100% of CPU usage vs 80%
of memory usage.

o It may cost more to host applications. Usually the larger servers with high compute
power cost more. If your application requires high compute resources, using these high-
cost larger servers may be the only choice.

System Analysis and Design Maryam Ramezani 26

Design
❑ Design is the process of deciding how the requirements should be

implemented using the available technology
❑ Some of the important activities during design: system engineering,

determining the software architecture, detailed designs, user
interface design, etc.

❑ For large systems, software engineers work on architectural design
in conjunction with high-level requirements to effectively divide the
system into subsystems

❑ For small systems, requirement precede design to avoid re-doing
the design if requirements change

System Analysis and Design Maryam Ramezani 27

Scaling Out (Horizontal Scaling)
❑ Scaling out (or horizontal scaling) addresses some of the limitations of the

scale up method. With horizontal scaling, the compute resource limitations
from physical hardware are no longer the issue. In fact, you can use any
reasonable size of server as long as the server has enough resources to run
the pods

System Analysis and Design Maryam Ramezani 28

Scaling Out (Horizontal Scaling)
❑ Advantages
• It delivers long-term scalability. The incremental nature of scaling out allows

you to scale your application for expected and long-term growth.
• Scaling back is easy. Your application can easily scale back by reducing the

number of pods when the load is low. This frees up compute resources for
other applications.

• You can utilize commodity servers. Normally, you don’t need large servers to
run containerized applications. Since application pods scale horizontally,
servers can be added as needed.

System Analysis and Design Maryam Ramezani 29

Scaling Out (Horizontal Scaling)
❑ Disadvantages
• It may require re-architecting. You will need to re-architect your application if

your application is using monolithic architecture(s).

System Analysis and Design Maryam Ramezani 30

Which One Is Best: Scale-out or Scale-up?

❑ The answer depends on your particular needs and resources. Here are some
questions to think about:

o Are your needs long term or short term?
o What’s your budget? Is it big or small?
o What type of workloads are you dealing with?
o Are you dealing with a temporary traffic peak or constant traffic overload?

System Analysis and Design Maryam Ramezani 31

Which One Is Best: Scale-out or Scale-up?
❑ Once you’ve answered those questions, consider these factors:
o Cost: Horizontal scaling is more expensive, at least initially, so if your budget is tight,

then scaling up might be the best choice.
o Reliability: Horizontal scaling is typically far more reliable than vertical scaling. If you’re

handling a high volume of transactional data or sensitive data, for example, and your
downtime costs are high, you should probably opt for scaling out.

o Geographic distribution: If you have, or plan to have, global clients, you’ll be much
better able to maintain your SLAs via scaling out since a single machine in a single
location won’t be enough for customers to access your services.

o Future-proofing: Because scaling up uses a single node, it’s tough to future-proof a
vertical scaling-based architecture. With scaling out, it’s much easier to increase the
overall performance threshold of your organization by adding machines. If you’re
planning for the long term and operate in a highly competitive industry with lots of
potential disruptors, scaling out would be the best option.

System Analysis and Design Maryam Ramezani 32

Which One Is Best: Scale-out or Scale-up?
❑ In short:

o If you have a bigger budget and expect a steady and large growth in data over a long
period of time and need to distribute an overstrained storage workload across several
storage nodes, scaling out is the best option.

o If you haven’t yet maxed out the full potential of your current infrastructure and can
still add CPUs and memory resources to it and you don’t anticipate a meaningfully large
growth in your data set over the next three to five years, then scaling up would likely
be the best choice.

System Analysis and Design Maryam Ramezani 33

Load Balancing04

System Analysis and Design Maryam Ramezani 34

What is a Load Balancer?
❑ A load balancer is a networking device or software application that distributes

and balances the incoming traffic among the servers to provide high
availability, efficient utilization of servers, and high performance. A load
balancer works as a “traffic cop” sitting in front of your server and routing
client requests across all servers
o Load balancers are highly used in cloud computing domains, data centers, and large-

scale web applications where traffic flow needs to be managed.
o It simply distributes the set of requested operations effectively across multiple servers

and ensures that no single server bears too many requests.

System Analysis and Design Maryam Ramezani 35

What will happen if there is NO Load Balancer?

System Analysis and Design Maryam Ramezani 36

Problems
• Single Point of Failure:
• If the server goes down or something happens to the server the whole application will be

interrupted and it will become unavailable for the users for a certain period. It will create
a bad experience for users which is unacceptable for service providers.

• Overloaded Servers:
• There will be a limitation on the number of requests that a web server can handle. If the

business grows and the number of requests increases the server will be overloaded.

• Limited Scalability:
• Without a load balancer, adding more servers to share the traffic is complicated. All

requests are stuck with one server, and adding new servers won’t automatically solve the
load issue.

System Analysis and Design Maryam Ramezani 37

What will happen if there is Load Balancer?

System Analysis and Design Maryam Ramezani 38

Key characteristics of Load Balancers

• Traffic Distribution: To keep any one server from becoming overburdened, load
balancers divide incoming requests evenly among several servers.

• High Availability: Applications' reliability and availability are improved by load balancers,
which divide traffic among several servers. The load balancer reroutes traffic to servers
that are in good condition in the event that one fails.

• Scalability: By making it simple to add servers or resources to meet growing traffic
demands, load balancers enable horizontal scaling.

• Optimization: Load balancers optimize resource utilization, ensuring efficient use of
server capacity and preventing bottlenecks.

• Health Monitoring: Load balancers often monitor the health of servers, directing traffic
away from servers experiencing issues or downtime.

• SSL Termination: Some load balancers can handle SSL/TLS encryption and decryption,
offloading this resource-intensive task from servers.

System Analysis and Design Maryam Ramezani 39

What is a Load Balancer?
❑ Scaling Out (Horizontal Scaling) with load balancer!
❑ IP of load balancer set in DNS. So servers can be in private network. More

Security!

System Analysis and Design Maryam Ramezani 40

How Load Balancer Works?

System Analysis and Design Maryam Ramezani 41

Types of Load Balancers
❑ 1. Hardware Load Balancers

These are real devices that are set up within a data center to control how traffic is
distributed among servers. They are highly reliable and work well since they are specialized
devices, but they are costly to purchase, scale, and maintain. They're often used by large
companies with consistent, high traffic volumes.

❑ 2. Software Load Balancers
These are software or programs that divide up traffic among servers. They operate on pre-
existing infrastructure (on-premises or in the cloud), in contrast to hardware load
balancers.

❑ 3. Cloud Load Balancers
Cloud load balancers, which are offered as a service by cloud providers like AWS, Google Cloud, and
Azure, automatically distribute traffic without requiring physical hardware. Users just pay for the
resources they use, and they are very scalable. They are perfect for dynamic workloads since they can
readily interface with cloud-based apps and adjust to traffic spikes.

System Analysis and Design Maryam Ramezani 42

Flow Example

User accesses the website:
User enters sad.sharif.edu in the browser.
DNS resolves the domain to the IP address of the Load Balancer (Nginx).

Load Balancer (Nginx) receives the request:
The request reaches Nginx (Load Balancer).
Nginx forwards the request to one of the backend servers based on load balancing algorithm (e.g., Round Robin or Least
Connections).

Backend Server serves the login page:
The selected backend server processes the request and serves the login page (HTML).
The server sends the login page back to Nginx, which then sends it to the user's browser.

System Analysis and Design Maryam Ramezani 43

Flow Example

User enters credentials (username & password):
User fills in the login form and submits the credentials.
A POST request with the username and password is sent to sad.sharif.edu/login.

Load Balancer (Nginx) forwards the POST request:
Nginx receives the POST request and forwards it to one of the backend servers (based on load
balancing).

Backend Server processes the login:
The backend server receives the POST request and begins processing the login logic.It connects to the
Database to verify the username and password.

System Analysis and Design Maryam Ramezani 44

Flow Example

Backend Server queries the database:
The backend server queries the Database to check if the provided username exists and if the password
matches.
If credentials are correct, it generates an authentication token.

Response sent from the backend server:
If the credentials are valid, the backend server creates an authentication token (or session ID) and sends
it back to Nginx.
If invalid, the backend server sends an error response (e.g., 401 Unauthorized).

System Analysis and Design Maryam Ramezani 45

Flow Example

Load Balancer (Nginx) sends response to the user:
Nginx sends the response to the user's browser.

If successful, the response contains an authentication token or session cookie.
If failed, an error message is returned to the user.

User is redirected to the dashboard or home page:
Upon successful login, the user is redirected to the main dashboard or homepage.
For subsequent requests, the authentication token (in the form of a cookie or header) is sent along with
the request for authentication.

System Analysis and Design Maryam Ramezani 46

Challenges of using Load Balancers
1. Single Point of Failure: Load balancers might create a single point of failure even though

they improve fault tolerance. Issues with the load balancer itself could cause traffic
distribution to be disrupted.

2. Complexity and Cost: High-quality load balancing solutions may be expensive, and load
balancer implementation and management can be complicated. This covers load
balancers for both software and hardware.

3. Configuration Challenges: Configuring load balancers correctly can be challenging,
especially when dealing with complex application architectures or diverse server
environments.

4. Potential for Overhead: Depending on the load balancing technique and configuration,
there may be additional overhead in the form of delay and processing time, even though
modern load balancers are designed to lessen this effect.

5. SSL Inspection Challenges: When SSL termination is performed at the load balancer, it
may introduce challenges related to SSL inspection and handling end-to-end encryption.

System Analysis and Design Maryam Ramezani 47

How can you prevent a load balancer from being a
single point of failure (SPOF)?

❑ Load Balancer crash refers to a sudden failure of a load-balancing system that helps in
distributing the network traffic across multiple servers and resources of a system.

System Analysis and Design Maryam Ramezani 48

1) Use multiple load balancers

❑ One of the simplest ways to avoid a load balancer from being a SPOF is to use
more than one load balancer in your architecture. You can deploy two or more
load balancers in parallel, with each one handling a portion of the traffic, or in
failover mode, with one acting as a backup for the other. You can also use a
load balancer cluster, which is a group of load balancers that work together as
a single logical unit, sharing configuration and health information. A load
balancer cluster can provide load balancing, redundancy, and scalability for
your applications.

System Analysis and Design Maryam Ramezani 49

2) Monitor and optimize load balancer performance

❑ Another way to prevent a load balancer from being a SPOF is to monitor and
optimize its performance regularly. You should use tools and metrics to track
the load balancer's health, capacity, throughput, latency, errors, and
availability. You should also perform load testing and benchmarking to identify
and resolve any bottlenecks or issues that could affect the load balancer's
performance. You should also tune the load balancer's settings and
parameters to optimize its resource utilization, traffic distribution, and session
management.

System Analysis and Design Maryam Ramezani 50

3) Implement load balancer security

❑ A third way to prevent a load balancer from being a SPOF is to implement
load balancer security. You should protect your load balancer from
unauthorized access, malicious attacks, and data breaches. You should use
encryption, authentication, authorization, and firewall rules to secure the
communication between the load balancer and the clients and servers. You
should also use security patches, updates, and audits to keep the load balancer
software up to date and compliant with the latest standards and regulations.

System Analysis and Design Maryam Ramezani 51

4) Leverage cloud-based load balancing services

❑ A fourth way to prevent a load balancer from being a SPOF is to leverage
cloud-based load balancing services. Cloud-based load balancing services are
offered by cloud providers as a managed service that can automatically scale,
balance, and monitor the traffic for your applications. Cloud-based load
balancing services can provide high availability, reliability, and performance for
your load balancer, without requiring you to maintain or operate the load
balancer hardware or software. You can also benefit from the cloud provider's
global network, security, and support features.

System Analysis and Design Maryam Ramezani 52

5) Use DNS-based load balancing
❑ A fifth way to prevent a load balancer from being a SPOF is to use DNS-based

load balancing. DNS-based load balancing is a technique that uses the Domain
Name System (DNS) to distribute the traffic across multiple load balancers or
servers. DNS-based load balancing can provide failover, redundancy, and geo-
distribution for your load balancer, by resolving the requests to different IP
addresses based on the availability, proximity, and performance of the load
balancers or servers. You can also use DNS-based load balancing to route the
traffic to different regions, zones, or domains, depending on your business
needs and preferences.

System Analysis and Design Maryam Ramezani 53

6) Combine multiple load balancing methods

❑ A sixth way to prevent a load balancer from being a SPOF is to combine
multiple load balancing methods in your architecture. You can use a hybrid or
multi-layered approach that integrates different types of load balancing
techniques, such as hardware, software, cloud, and DNS-based load balancing.
By combining multiple load balancing methods, you can achieve higher levels
of availability, scalability, and performance for your load balancer, as well as
greater flexibility and control over your traffic management. You can also use
different load balancing algorithms, such as round robin, least connections, or
weighted, to optimize the traffic distribution and load balancing efficiency.

System Analysis and Design Maryam Ramezani 54

Conclusion

❑ A load balancer enables elastic scalability which improves the performance
and throughput of data. It allows you to keep many copies of data
(redundancy) to ensure the availability of the system. In case a server goes
down or fails you’ll have the backup to restore the services.

❑ Load balancers can be placed at any software layer.
❑ Many companies use both hardware and software to implement load

balancers, depending on the different scale points in their system.

System Analysis and Design Maryam Ramezani 55

Database Sharding
(Partitioning)04

System Analysis and Design Maryam Ramezani 56

Partitioning
❑ When the table size grows over time, each operation cost on the table

will increase as well.
❑ We can’t increase the size of the table over 32GB in normal conditions.

Before reaching this size performance issues may arise.
Good Solution: Partitioning

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 57

Add partitioning for a table?
❑ It shouldn’t be the first option to improve performance!!!

Why?
o It adds another level of complexity!!
o Unlike other performance enhancing such as indexing, partitions are part of

table definition so its difficult to change!!

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 58

Add partitioning for a table?
❑ Signs to check a table needs partitioning:

1) Table Size: there is no rule! But encounter long responses time and table
is larger than 200GB

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 59

Add partitioning for a table?
2) Table Bloat: For a DELETE, it simply marks the row as unavailable for future transactions,
and for UPDATE, under the hood it's a combined INSERT then DELETE, where the previous
version of the row is marked unavailable.
The space cannot be used. To then mark the space as available for use by the database, a
vacuum process (manually or automatically) needs to come along behind the operations, and
mark that space available for the database to use.
Vacuum process should scan all rows. If table is large vacuum process will take longer.
Partitioning can help to make it faster with less CPU.

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 60

How should the Tables be
partitioned?
❑ Partitioning can drastically improve performance on a table when done right,

but when not needed o done wrong can make the performance worse or it
can make the database unstable.

❑ First look for access patterns for splitting the tables:
o By knowing the applications that access the database.
o Monitoring the logs and generating reports.

System Analysis and Design Maryam Ramezani 61

How should the Tables be partitioned?

We look for columns that are either in where or in join conditions.

These will be the partition keys.
In a good design, we have a small subset of data rather than the whole

System Analysis and Design Maryam Ramezani 62

Partitioning Methods

Range Partition

List Partition

Hash Partition

Composite Partition

System Analysis and Design Maryam Ramezani 63

Partitioning Methods
❑ Range partitioning maps data to partitions on the basis of

ranges of partition key values for each partition.

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 64

Partitioning Methods
❑ List partitioning maps rows to partitions by using a

list of discrete values for the partitioning column.
oGood when partition key is category value.

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 65

Partitioning Methods
❑ Hash partitioning maps data to partitions by using

a hashing algorithm applied to a partitioning key.
oEspecially useful when there is no obvious way of diving

data into logical groups.

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 66

Partitioning Methods
❑ Composite partitioning:
o Range-Hash sub partitions the range partitions using a hashing

algorithm.
o Range-List sub partitions the range partitions using an explicit list.

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 67

Range Partition - Example
❑ Consider following table with not null age attribute:

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 68

Range Partition- Example
❑ create table customers (id integer, name text, age numeric)

partition by range(age)

❑ create table cust_young partition of customers for values from

(MINVALUE) to (25)

❑ create table cust_medium partition of customers for values

from (25) to (75)

❑ create table cust_old partition of customers for values from

(75) to (MAXVALUE)

❑ insert into customers values (1,'Bob',20),

(2,'Alice',20),(3,'Doe',38),(4,'Richard',80)

❑ select * from customers c

❑ select tableoid::regclass,* from customers c

CE384: Database DesignMaryam Ramezani

System Analysis and Design Maryam Ramezani 69

	Slide 1: Software Design
	Slide 2: Introduction
	Slide 3: Types of Software and their Differences
	Slide 4: Types of Software and their Differences -continue
	Slide 5: Domain Name System
	Slide 6: DNS
	Slide 7: App-DNS-Server
	Slide 8: How DNS works
	Slide 9: How DNS works
	Slide 10: DNS Resolver
	Slide 11
	Slide 12: Root Server
	Slide 13: TLD Server
	Slide 14: Authoritative Server
	Slide 15: Overview
	Slide 16: Conclusion
	Slide 17: Common DNS Record Types
	Slide 18: Common DNS Record Types
	Slide 19: Common DNS Record Types
	Slide 20: Common DNS Record Types
	Slide 21: Common DNS Record Types
	Slide 22: Scaling
	Slide 23: Scaling Up (Vertical Scaling)
	Slide 24: Scaling Up (Vertical Scaling)
	Slide 25: Scaling Up (Vertical Scaling)
	Slide 26: Design
	Slide 27: Scaling Out (Horizontal Scaling)
	Slide 28: Scaling Out (Horizontal Scaling)
	Slide 29: Scaling Out (Horizontal Scaling)
	Slide 30: Which One Is Best: Scale-out or Scale-up?
	Slide 31: Which One Is Best: Scale-out or Scale-up?
	Slide 32: Which One Is Best: Scale-out or Scale-up?
	Slide 33: Load Balancing
	Slide 34: What is a Load Balancer?
	Slide 35: What will happen if there is NO Load Balancer?
	Slide 36: Problems
	Slide 37: What will happen if there is Load Balancer?
	Slide 38: Key characteristics of Load Balancers
	Slide 39: What is a Load Balancer?
	Slide 40: How Load Balancer Works?
	Slide 41: Types of Load Balancers
	Slide 42: Flow Example
	Slide 43: Flow Example
	Slide 44: Flow Example
	Slide 45: Flow Example
	Slide 46: Challenges of using Load Balancers
	Slide 47: How can you prevent a load balancer from being a single point of failure (SPOF)?
	Slide 48: 1) Use multiple load balancers
	Slide 49: 2) Monitor and optimize load balancer performance
	Slide 50: 3) Implement load balancer security
	Slide 51: 4) Leverage cloud-based load balancing services
	Slide 52: 5) Use DNS-based load balancing
	Slide 53: 6) Combine multiple load balancing methods
	Slide 54: Conclusion
	Slide 55: Database Sharding (Partitioning)
	Slide 56: Partitioning
	Slide 57: Add partitioning for a table?
	Slide 58: Add partitioning for a table?
	Slide 59: Add partitioning for a table?
	Slide 60: How should the Tables be partitioned?
	Slide 61: How should the Tables be partitioned?
	Slide 62: Partitioning Methods
	Slide 63: Partitioning Methods
	Slide 64: Partitioning Methods
	Slide 65: Partitioning Methods
	Slide 66: Partitioning Methods
	Slide 67: Range Partition - Example
	Slide 68: Range Partition- Example
	Slide 69

